Heimberg C, Gur RE, Erwin RJ, Shtasel DL, Gur RC. Facial emotion discrimination: III. Behavioral findings in schizophrenia. Psychiatry Res Irel. 1992;42:253–65.
Google Scholar
Kohler CG, Walker JB, Martin EA, Healey KM, Moberg PJ. Facial emotion perception in schizophrenia: A meta-analytic review. Schizophr Bull. 2010;36:1009–19.
Google Scholar
Penn DL, Spaulding W, Reed D, Sullivan M. The relationship of social cognition to ward behavior in chronic schizophrenia. Schizophr Res. 1996;20:327–35.
Google Scholar
Couture SM, Penn DL, Roberts DL. The functional significance of social cognition in schizophrenia: A review. Schizophr Bull. 2006;32:S44–63.
Google Scholar
Phillips LK, Seidman LJ. Emotion processing in persons at risk for schizophrenia. Schizophr Bull. 2008;34:888–903.
Google Scholar
Gur RE, Nimgaonkar VL, Almasy L, Calkins ME, Ragland JD, Pogue-Geile MF, et al. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. Am J Psychiatry. 2007;164:813–9.
Google Scholar
Allott KA, Rice S, Bartholomeusz CF, Klier C, Schlögelhofer M, Schäfer MR, et al. Emotion recognition in unaffected first-degree relatives of individuals with first-episode schizophrenia. Schizophr Res [Internet] Elsevier B V 2015;161:322–8. https://doi.org/10.1016/j.schres.2014.12.010.
Google Scholar
Martin D, Croft J, Pitt A, Strelchuk D, Sullivan S, Zammit S. Systematic review and meta-analysis of the relationship between genetic risk for schizophrenia and facial emotion recognition. Schizophr Res [Internet] Elsevier B V 2020;218:7–13. https://doi.org/10.1016/j.schres.2019.12.031.
Google Scholar
Rasetti R, Mattay VS, Wiedholz LM, Kolachana BS, Hariri AR, Callicott JH, et al. Evidence that altered amygdala activity in schizophrenia is related to clinical state and not genetic risk. Am J Psychiatry. 2009;166:216–25.
Google Scholar
Gur RE, Loughead J, Kohler CG, Elliott MA, Lesko K, Ruparel K, et al. Limbic activation associated with misidentification of fearful faces and flat affect in schizophrenia. Arch Gen Psychiatry. 2007;64:1356–66.
Google Scholar
Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Valdez JN, Siegel SJ, et al. Association of enhanced limbic response to threat with decreased cortical facial recognition memory response in schizophrenia. Am J Psychiatry. 2010;167:418–26.
Google Scholar
Anticevic A, Van Snellenberg JX, Cohen RE, Repovs G, Dowd EC, Barch DM. Amygdala recruitment in schizophrenia in response to aversive emotional material: A meta-analysis of neuroimaging studies. Schizophr Bull. 2012;38:608–21.
Google Scholar
Butler PD, Abeles IY, Weiskopf NG, Tambini A, Jalbrzikowski M, Legatt ME, et al. Sensory contributions to impaired emotion processing in schizophrenia. Schizophr Bull. 2009;35:1095–107.
Google Scholar
Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia [Internet] Elsevier Ltd. 2007;45:174–94. https://doi.org/10.1016/j.neuropsychologia.2006.06.003.
Google Scholar
Satterthwaite TD, Wolf DH, Pinkham AE, Ruparel K, Elliott MA, Valdez JN, et al. Opposing amygdala and ventral striatum connectivity during emotion identification. Brain Cogn [Internet] Elsevier Inc 2011;76:353–63. https://doi.org/10.1016/j.bandc.2011.04.005.
Google Scholar
Dolcos F, Katsumi Y, Weymar M, Moore M, Tsukiura T, Dolcos S. Emerging directions in emotional episodic memory. Front Psychol. 2017;8:1–25.
Google Scholar
Li H, Chan RCK, McAlonan GM, Gong QY. Facial emotion processing in schizophrenia: A meta-analysis of functional neuroimaging data. Schizophr Bull. 2010;36:1029–39.
Google Scholar
Park HY, Yun JY, Shin NY, Kim SY, Jung WH, Shin YS, et al. Decreased neural response for facial emotion processing in subjects with high genetic load for schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry [Internet] Elsevier Inc 2016;71:90–6. https://doi.org/10.1016/j.pnpbp.2016.06.014.
Google Scholar
Taylor SF, Tso IF. GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr Res. 2015;167:84–90.
Google Scholar
Hashimoto T, Arion D, Unger T, Maldonado-Avilés JG, Morris HM, Volk DW, et al. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry. 2008;13:147–61.
Google Scholar
Hashimoto T, Ph D, Bazmi HH, Mirnics K, Wu Q, Ph D, et al. Conserved Regional Patterns of GABA-Related Transcript Expression in the Neocortex of Subjects With Schizophrenia. Am J Psychiatry. 2008;165:479–89.
Google Scholar
Yoon JH, Maddock RJ, Rokem A, Silver MA, Minzenberg MJ, Ragland JD, et al. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci. 2010;30:3777–81.
Google Scholar
Spokes EGS, Garrett NJ, Rossor MN, Iversen LL. Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntington’s chorea subjects. J Neurol Sci. 1980;48:303–13.
Google Scholar
Simpson MDC, Slater P, Deakin JFW, Royston MC, Skan WJ. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci Lett. 1989;107:211–5.
Google Scholar
Wise RG, Tracey I. The role of fMRI in drug discovery. J Magn Reson Imaging. 2006;23:862–76.
Google Scholar
Davis M. The Role Of The Amygdala In Fear And Anxiety. Annu Rev Neurosci. 1992;15:353–75.
Google Scholar
Verster JC, Volkerts ER. Clinical pharmacology, clinical efficacy, and behavioral toxicity of Alprazolam: A review of the literature. CNS Drug Rev. 2004;10:45–76.
Google Scholar
Ashton H. The diagnosis and management of benzodiazepine dependence. Curr Opin Psychiatry. 2005;18:249–55.
Google Scholar
Buchanan TW, Karafin MS, Adolphs R. Selective effects of Triazolam on memory for emotional, relative to neutral, stimuli: Differential effects on gist versus detail. Behav Neurosci. 2003;117:517–25.
Google Scholar
Coupland NJ, Singh AJ, Sustrik RA, Ting P, Blair RJ. Effects of diazepam on facial emotion recognition. J Psychiatry Neurosci. 2003;28:452–63.
Google Scholar
Garcez H, Fernandes C, Barbosa F, Pereira MR, Silveira C, Marques-Teixeira J, et al. Effects of benzodiazepines administration on identification of facial expressions of emotion: a meta-analysis. Psychopharmacol (Berl) Psychopharmacol. 2020;237:1–9.
Google Scholar
Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB. Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch Gen Psychiatry. 2005;62:282–8.
Google Scholar
Del-Ben CM, Ferreira CAQ, Sanchez TA, Alves-Neto WC, Guapo VG, De Araujo DB, et al. Effects of diazepam on BOLD activation during the processing of aversive faces. J Psychopharmacol. 2012;26:443–51.
Google Scholar
Wolf DH, Satterthwaite TD, Loughead J, Pinkham A, Overton E, Elliott MA, et al. Amygdala abnormalities in first-degree relatives of individuals with schizophrenia unmasked by benzodiazepine challenge. Psychopharmacol (Berl). 2011;218:503–12.
Google Scholar
Liu YY, Slotine JJ, Barabási AL. Controllability of complex networks. Nature 2011;473:167–73.
Google Scholar
Pasqualetti F, Zampieri S, Bullo F. Controllability metrics, limitations and algorithms for complex networks. IEEE Trans Control Netw Syst IEEE. 2014;1:40–52.
Google Scholar
Bassett DS, Sporns O. Network neuroscience. Nat Neurosci [Internet]. 2017;20:353–64. http://www.ncbi.nlm.nih.gov/pubmed/28230844.
Google Scholar
Yan G, Vértes PE, Towlson EK, Chew YL, Walker DS, Schafer WR, et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nat [Internet] Nat Publ Group. 2017;550:519–23. https://doi.org/10.1038/nature24056.
Google Scholar
Kim JZ, Soffer JM, Kahn AE, Vettel JM, Pasqualetti F, Bassett DS. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat Phys. 2018;14:91–8.
Google Scholar
Brynildsen JK, Mace KD, Cornblath EJ, Weidler C, Pasqualetti F, Bassett DS, et al. Gene coexpression patterns predict opiate-induced brain-state transitions. Proc Natl Acad Sci USA. 2020;117:19556–65.
Google Scholar
Szymula KP, Pasqualetti F, Graybiel AM, Desrochers TM, Bassett DS. Habit learning supported by efficiently controlled network dynamics in naive macaque monkeys. arXiv preprint arXiv:2006.14565. 2020.
Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, et al. Controllability of structural brain networks. Nat Commun [Internet] Nat Publ Group. 2015;6:1–10. https://doi.org/10.1038/ncomms9414.
Google Scholar
Braun U, Harneit A, Pergola G, Menara T, Schaefer A, Betzel RF, et al. Brain state stability during working memory is explained by network control theory, modulated by dopamine D1/D2 receptor function, and diminished in schizophrenia. bioRxiv [Internet]. Cold Spring Harbor Laboratory; 2019 [cited 2019 Nov 18];679670. Available from: https://www.biorxiv.org/content/10.1101/679670v1.
Lee WH, Rodrigue A, Glahn DC, Bassett DS, Frangou S. Heritability and cognitive relevance of structural brain controllability. Cereb Cortex. 2020;30:3044–54.
Google Scholar
Bernhardt BC, Fadaie F, Liu M, Caldairou B, Gu S, Jefferies E, et al. Temporal lobe epilepsy: Hippocampal pathology modulates connectome topology and controllability. Neurology 2019;92:E2209–20.
Google Scholar
Jeganathan J, Perry A, Bassett DS, Roberts G, Mitchell PB, Breakspear M. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage Clin [Internet] Elsevier. 2018;19:71–81. https://doi.org/10.1016/j.nicl.2018.03.032.
Google Scholar
Karrer TM, Kim JZ, Stiso J, Kahn AE, Pasqualetti F, Habel U, et al. A practical guide to methodological considerations in the controllability of structural brain networks. J Neural Eng [Internet] {IOP} Publ. 2020;17:26031. Available from https://doi.org/10.1088%2F1741-2552%2Fab6e8b.
Google Scholar
Betzel RF, Gu S, Medaglia JD, Pasqualetti F, Bassett DS. Optimally controlling the human connectome: The role of network topology. Sci Rep. [Internet] Nat Publ Group. 2016;6:1–14. https://doi.org/10.1038/srep30770.
Google Scholar
Gu S, Betzel RF, Mattar MG, Cieslak M, Delio PR, Grafton ST, et al. Optimal trajectories of brain state transitions. Neuroimage [Internet] Elsevier. 2017;148:305–17. https://doi.org/10.1016/j.neuroimage.2017.01.003.
Google Scholar
Stiso J, Khambhati AN, Menara T, Kahn AE, Stein JM, Das SR, et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell Rep. [Internet] ElsevierCompany. 2019;28:2554–2566.e7. https://doi.org/10.1016/j.celrep.2019.08.008.
Google Scholar
Cornblath EJ, Ashourvan A, Kim JZ, Betzel RF, Ciric R, Adebimpe A, et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun Biol [Internet] Springe US. 2020;3:1–12. https://doi.org/10.1038/s42003-020-0961-x.
Google Scholar
Gur RC, Sara R, Hagendoorn M, Marom O, Hughett P, Macy L, et al. A method for obtaining 3-dimensional facial expressions and its standardization for use in neurocognitive studies. J Neurosci Methods. 2002;115:137–43.
Google Scholar
Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat Methods [Internet] Springe US. 2019;16:111–6. https://doi.org/10.1038/s41592-018-0235-4.
Google Scholar
Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 2001;14:1370–86.
Google Scholar
Ciric R, Rosen AFG, Erus G, Cieslak M, Adebimpe A, Cook PA, et al. Mitigating head motion artifact in functional connectivity MRI. Nat Protoc. 2018;13:2801–26.
Google Scholar
Loughead J, Gur RC, Elliott M, Gur RE. Neural circuitry for accurate identification of facial emotions. Brain Res. 2008;1194:37–44.
Google Scholar
Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KQ, et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci Methods [Internet] Elsevier B V 2012;203:386–97. https://doi.org/10.1016/j.jneumeth.2011.09.031.
Google Scholar
Dukart J, Holiga S, Rullmann M, Lanzenberger R, Hawkins PCT, Mehta MA, et al. JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. Hum Brain Mapp. 2021;42:555–66.
Dukart J, Holiga Š, Chatham C, Hawkins P, Forsyth A, McMillan R, et al. Cerebral blood flow predicts differential neurotransmitter activity. Sci Rep. 2018;8:1–11.
Google Scholar
Alakurtti K, Johansson JJ, Joutsa J, Laine M, Bäckman L, Nyberg L, et al. Long-term test-retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: Study with [11C]raclopride and high-resolution PET. J Cereb Blood Flow Metab. 2015;35:1199–205.
Google Scholar
Hesse S, Becker GA, Rullmann M, Bresch A, Luthardt J, Hankir MK, et al. Central noradrenaline transporter availability in highly obese, non-depressed individuals. Eur J Nucl Med Mol Imaging Eur J Nucl Med Mol Imaging. 2017;44:1056–64.
Google Scholar
Kaller S, Rullmann M, Patt M, Becker GA, Luthardt J, Girbardt J, et al. Test–retest measurements of dopamine D1-type receptors using simultaneous PET/MRI imaging. Eur J Nucl Med Mol Imaging Eur J Nucl Med Mol Imaging. 2017;44:1025–32.
Google Scholar
Gómez FJG, Huertas I, Lojo Ramírez JA, Solís DG. Elaboración de una plantilla de SPM para la normalización de imágenes de PET con 18F-DOPA. Imagen Diagnóstica. 2018;9:23–5.
Savli M, Bauer A, Mitterhauser M, Ding Y-S, Hahn A, Kroll T, et al. Normative database of the serotonergic system in healthy subjects using multi-tracer PET. Neuroimage Elsevier. 2012;63:447–59.
Google Scholar
Kragel PA, LaBar KS. Somatosensory representations link the perception of emotional expressions and sensory experience. eNeuro 2016;3:169–77.
Google Scholar
Wingenbach TSH, Brosnan M, Pfaltz MC, Peyk P, Ashwin C. Perception of discrete emotions in others: Evidence for distinct facial mimicry patterns. Sci Rep. 2020;10:1–13.
Google Scholar
Tsao DY, Moeller S, Freiwald WA. Comparing face patch systems in macaques and humans. Proc Natl Acad Sci USA. 2008;105:19514–9.
Google Scholar
Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JDE, Saxe RR. Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci Nat Publ Group. 2012;15:321–7.
Google Scholar
Adolphs R, Tranel D, Damasio H, Damasio AR. Fear and the human amygdala. J Neurosci. 1995;15:5879–91.
Google Scholar
Barrett LF, Russell JA The psychological construction of emotion. Guilford Publications; 2014.
Giardino L, Zanni M, Pozza M, Bettelli C, Covelli V. Dopamine receptors in the striatum of rats exposed to repeated restraint stress and alprazolam treatment. Eur J Pharm. 1998;344:143–7.
Google Scholar
Bentue-Ferrer D, Reymann JM, Tribut O, Allain H, Vasar E, Bourin M. Role of dopaminergic and serotonergic systems on behavioral stimulatory effects of low-dose alprazolam and lorazepam. Eur Neuropsychopharmacol Elsevier. 2001;11:41–50.
Google Scholar
Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: A review of models, theories, and experiments. Front Neural Circuits. 2017;11:1–18.
Google Scholar
Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci Nat Publ Group. 2013;14:365–76.
Google Scholar
Goghari VM, Sanford N, Spilka MJ, Woodward TS. Task-related functional connectivity analysis of emotion discrimination in a family study of schizophrenia. Schizophr Bull. 2017;43:1348–62.
Google Scholar
Lavigne KM, Menon M, Woodward TS. Functional brain networks underlying evidence integration and delusions in schizophrenia. Schizophr Bull [Internet]. 2019;46:175–83. https://doi.org/10.1093/schbul/sbz032.
Google Scholar
Boos HBM, Aleman A, Cahn W, Pol HH, Kahn RS. Brain volumes in relatives of patients with schizophrenia: A meta-analysis. Arch Gen Psychiatry [Internet]. 2007;64:297–304. https://doi.org/10.1001/archpsyc.64.3.297.
Google Scholar
Haijma SV, Van Haren N, Cahn W, Koolschijn PCMP, Hulshoff Pol HE, Kahn RS. Brain Volumes in Schizophrenia: A Meta-Analysis in Over 18 000 Subjects. Schizophr Bull [Internet]. 2013;39:1129–38. https://doi.org/10.1093/schbul/sbs118.
Google Scholar
Arat HE, Chouinard VA, Cohen BM, Lewandowski KE, Öngür D. Diffusion tensor imaging in first degree relatives of schizophrenia and bipolar disorder patients. Schizophr Res [Internet] Elsevier B V 2015;161:329–39. https://doi.org/10.1016/j.schres.2014.12.008.
Google Scholar
Landes J, Osimani B, Poellinger R. Epistemology of causal inference in pharmacology. Eur J Philos Sci Springe. 2018;8:3–49.
Google Scholar
Balderston NL, Beydler EM, Goodwin M, Deng Z, Radman T, Luber B, et al. Low-frequency parietal repetitive transcranial magnetic stimulation reduces fear and anxiety. Transl Psychiatry [Internet]. Springer US; 2020; Available from: https://doi.org/10.1038/s41398-020-0751-8.
Stiso J, Corsi M-C, Vettel JM, Garcia JO, Pasqualetti F, de Vico-Fallani F, et al. Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior. J Neural Eng IOP Publ. 2020;17:046018.
Google Scholar
Mitchell SM, Lange S, Brus H. Gendered Citation Patterns in International Relations Journals. Int Stud Perspect. 2013;14:485–92.
Google Scholar
Maliniak D, Powers R, Walter BF. The gender citation gap in international relations. Int. Organ. 2013;67:889–922.
Caplar N, Tacchella S, Birrer S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 2017;1:0141.
Dion ML, Sumner JL, Mitchell SML. Gendered citation patterns across political science and social science methodology fields. Polit Anal Camb Univ Press. 2018;26:312–27.
Google Scholar
Dworkin JD, Linn KA, Teich EG, Zurn P, Shinohara RT, Bassett DS. The extent and drivers of gender imbalance in neuroscience reference lists. Nat Neurosci [Internet] Springe US. 2020;23:918–26. https://doi.org/10.1038/s41593-020-0658-y.
Google Scholar
Zhou D, Cornblath EJ, Stiso J, Teich EG, Dworkin JD, Blevins AS, et al. Gender Diversity Statement and Code Notebook v1.0 [Internet]. Zenodo; 2020 [cited 2020 Mar 25]. Available from: https://doi.org/10.5281/zenodo.3672110
Ambekar A, Ward C, Mohammed J, Male S, Skiena S. Name-ethnicity classification from open sources. Proc ACM SIGKDD Int Conf Knowl Discov Data Min. 2009;49–57.
Sood G, Laohaprapanon S. Predicting race and ethnicity from the sequence of characters in a name. arXiv preprint arXiv:1805.02109. 2018.